criterion performance measurements

overview

want to understand this report?

readPng/Friday

38
40
42
44
46
readPng/Friday time densities
mean
5
8
10
13
15
2.5 iters
200
300
400
500
600
700
0 s
100 ms
regression
readPng/Friday times
lower bound estimate upper bound
OLS regression 38.2 ms 41.6 ms 45.1 ms
R² goodness-of-fit 0.966 0.981 0.994
Mean execution time 40.3 ms 41.6 ms 43.0 ms
Standard deviation 2.30 ms 2.73 ms 3.39 ms

Outlying measurements have moderate (19.0%) effect on estimated standard deviation.

readPng/Yarr

14
15
16
13.5
14.5
15.5
readPng/Yarr time densities
mean
10
15
20
25
5 iters
200
300
400
500
0 s
100 ms
regression
readPng/Yarr times
lower bound estimate upper bound
OLS regression 14.5 ms 15.2 ms 15.9 ms
R² goodness-of-fit 0.976 0.986 0.993
Mean execution time 14.3 ms 14.6 ms 15.0 ms
Standard deviation 862 μs 985 μs 1.08 ms

Outlying measurements have moderate (30.6%) effect on estimated standard deviation.

readPng/Repa

14
15
16
17
18
13.5
14.5
15.5
16.5
17.5
readPng/Repa time densities
mean
10
15
20
25
5 iters
200
300
400
0 s
100 ms
regression
readPng/Repa times
lower bound estimate upper bound
OLS regression 13.4 ms 13.6 ms 13.8 ms
R² goodness-of-fit 0.998 0.999 1.000
Mean execution time 14.0 ms 14.3 ms 15.1 ms
Standard deviation 648 μs 1.17 ms 1.76 ms

Outlying measurements have moderate (40.7%) effect on estimated standard deviation.

readPng/OpenCV

13.5
13.5
13.5
13.5
13.6
13.6
13.6
readPng/OpenCV time densities
mean
10
15
20
25
5 iters
100
150
200
250
300
350
400
0 s
50 ms
regression
readPng/OpenCV times
lower bound estimate upper bound
OLS regression 13.5 ms 13.5 ms 13.6 ms
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 13.5 ms 13.6 ms 13.6 ms
Standard deviation 25.7 μs 39.1 μs 51.3 μs

Outlying measurements have slight (3.7%) effect on estimated standard deviation.

threshold/Friday

84
85
86
87
83.5
84.5
85.5
86.5
threshold/Friday time densities
mean
4
6
8
10
2 iters
400
600
800
0 s
200 ms
1 s
regression
threshold/Friday times
lower bound estimate upper bound
OLS regression 82.8 ms 83.7 ms 84.3 ms
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 84.1 ms 84.7 ms 85.7 ms
Standard deviation 343 μs 1.18 ms 1.58 ms

Outlying measurements have slight (9.0%) effect on estimated standard deviation.

threshold/UnmHip

720
740
760
780
800
threshold/UnmHip time densities
mean
1
2
2
3
3
4
4
0.5 iters
2
3
0 s
500 ms
1 s
1.5
2.5
3.5
regression
threshold/UnmHip times
lower bound estimate upper bound
OLS regression 606 ms 780 ms 1.10 s
R² goodness-of-fit 0.969 0.979 1.000
Mean execution time 719 ms 751 ms 809 ms
Standard deviation 0 s 50.7 ms 55.4 ms

Outlying measurements have moderate (19.6%) effect on estimated standard deviation.

threshold/Yarr

15
20
25
17.5
22.5
27.5
threshold/Yarr time densities
mean
10
15
20
5 iters
200
300
400
500
600
0 s
100 ms
regression
threshold/Yarr times
lower bound estimate upper bound
OLS regression 20.3 ms 22.6 ms 24.5 ms
R² goodness-of-fit 0.937 0.966 0.987
Mean execution time 20.9 ms 22.3 ms 23.2 ms
Standard deviation 1.93 ms 2.89 ms 4.44 ms

Outlying measurements have severe (58.3%) effect on estimated standard deviation.

threshold/Repa

75
80
85
90
77.5
82.5
87.5
threshold/Repa time densities
mean
4
6
8
10
2 iters
400
600
800
0 s
200 ms
1 s
regression
threshold/Repa times
lower bound estimate upper bound
OLS regression 84.9 ms 87.6 ms 92.5 ms
R² goodness-of-fit 0.976 0.993 0.999
Mean execution time 80.5 ms 83.3 ms 86.4 ms
Standard deviation 3.23 ms 4.71 ms 6.44 ms

Outlying measurements have moderate (18.0%) effect on estimated standard deviation.

threshold/OpenCV

250
275
300
325
350
375
400
threshold/OpenCV time densities
mean
200
300
400
500
600
700
800
100 iters
100
150
200
250
0 s
50 ms
regression
threshold/OpenCV times
lower bound estimate upper bound
OLS regression 259 μs 262 μs 264 μs
R² goodness-of-fit 0.993 0.996 0.998
Mean execution time 281 μs 290 μs 302 μs
Standard deviation 33.5 μs 39.7 μs 49.0 μs

Outlying measurements have severe (87.9%) effect on estimated standard deviation.

mean/Friday

2.44
2.46
2.48
2.5
2.52
2.54
mean/Friday time densities
mean
1
2
2
3
3
4
4
0.5 iters
2
4
6
8
10
12
0 s
regression
mean/Friday times
lower bound estimate upper bound
OLS regression 2.34 s 2.54 s 2.82 s
R² goodness-of-fit 0.998 0.998 1.000
Mean execution time 2.44 s 2.48 s 2.55 s
Standard deviation 0 s 57.4 ms 61.2 ms

Outlying measurements have moderate (18.8%) effect on estimated standard deviation.

mean/UnmHip

588
590
592
594
596
mean/UnmHip time densities
mean
1
2
2
3
3
4
4
0.5 iters
2
0 s
500 ms
1 s
1.5
2.5
regression
mean/UnmHip times
lower bound estimate upper bound
OLS regression 563 ms 591 ms 612 ms
R² goodness-of-fit 0.999 1.000 1.000
Mean execution time 588 ms 593 ms 595 ms
Standard deviation 0 s 4.43 ms 4.67 ms

Outlying measurements have moderate (18.8%) effect on estimated standard deviation.

mean/Yarr

75
80
85
90
95
100
105
110
115
mean/Yarr time densities
mean
4
6
8
10
2 iters
400
600
800
0 s
200 ms
1 s
1.2
regression
mean/Yarr times
lower bound estimate upper bound
OLS regression 80.8 ms 101 ms 122 ms
R² goodness-of-fit 0.891 0.944 0.996
Mean execution time 80.5 ms 85.4 ms 95.5 ms
Standard deviation 4.30 ms 11.4 ms 17.8 ms

Outlying measurements have moderate (47.8%) effect on estimated standard deviation.

mean/Repa

100
150
200
250
300
mean/Repa time densities
mean
2
3
4
5
6
7
1 iters
400
600
800
0 s
200 ms
1 s
regression
mean/Repa times
lower bound estimate upper bound
OLS regression -30.1 ms 91.1 ms 126 ms
R² goodness-of-fit 0.010 0.517 0.994
Mean execution time 127 ms 160 ms 253 ms
Standard deviation 5.78 ms 73.5 ms 101 ms

Outlying measurements have severe (84.9%) effect on estimated standard deviation.

mean/OpenCV

3
2.7
2.80
2.90
3.1
3.2
mean/OpenCV time densities
mean
20
30
40
50
60
70
80
90
10 iters
100
150
200
250
300
0 s
50 ms
regression
mean/OpenCV times
lower bound estimate upper bound
OLS regression 2.75 ms 2.83 ms 2.91 ms
R² goodness-of-fit 0.996 0.997 0.999
Mean execution time 2.89 ms 2.92 ms 2.95 ms
Standard deviation 75.1 μs 93.5 μs 127 μs

Outlying measurements have moderate (16.7%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.